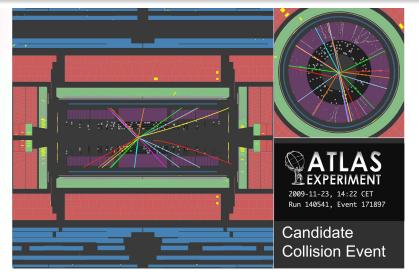
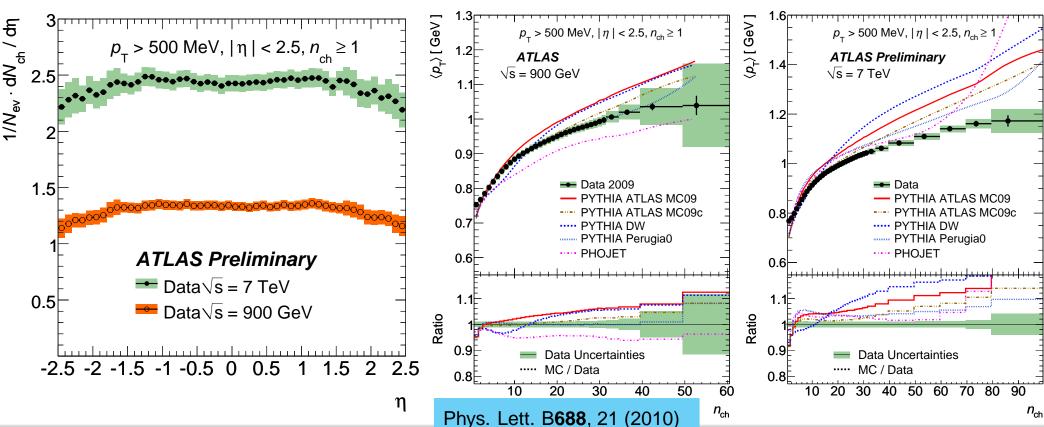

BNL Contributions to ATLAS Physics

BNL Physics Analysis on ATLAS

- BNL has built a strong foundation for physics analysis
 - extensive expertise in detector, software, and performance
 - lead analysis software tool development
- The physics prospects drive our efforts:
 - active in physics analysis since the beginning of ATLAS
 - performance activities lead directly into physics analyses
 - current focus is on the initial data
 - Standard Model physics
 - backgrounds to signatures of new physics
 - long-term interests are in searches for new physical phenomena
- Leadership roles:
 - Physics Group Co-Conveners
 - Higgs: Assamagan (2008–10)
 - SUSY: Redlinger (2009–11)
 - Heavy Ions: Steinberg^{||} (2008–10)
 - U.S. ATLAS Physics Forums Redlinger (BSM/SUSY), Snyder (egamma)
 - Paper authors, editors, & reviewers
- Collaborative Activities:
 - work with U.S. and foreign institutions
 - productive collaborations with BNL theorists
 - BNL physicists supervise students from Iowa State, Johannesburg, Oregon

supported by Nuclear Physics


First Collisions to First Papers



First broad look at particle production in minimum bias reactions

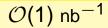
Steinberg |

- important for understanding detector performance
- crucial for tuning Monte Carlo event generators
- BNL contributed to trigger efficiencies and comparisons with other experiments in collaboration with DESY, Freiburg, UC London
- Now measuring two-particle correlations between charged particles in collaboration with Glasgow

 $\mathcal{O}(1)~\text{nb}^{-1}$

JetEtmiss

Begel, Ma, Majewski, Paige[†], Pleier


Combined Muon

Adams[‡], Assamagan, Nikolopoulis, Yamamoto

EGamma Performance Snyder, Tarrade

- † supported by High Energy Theory
 ‡ supported by US ATLAS Operations
 | supported by Nuclear Physics
 _ graduate student (supervised by BNL personnel)
- lead analyzer or editor

 $O(10) \text{ nb}^{-1}$

JetEtmiss

Begel, Ma, Majewski, Paige[†], Pleier Observation of Jets

Begel, Majewski, Paige[†]

Combined Muon

Adams[‡], Assamagan, Nikolopoulis, <u>Yamamoto</u>

Observation of W/Z

Assamagan, Nikolopoulis, Tarrade, Yamamoto

supported by High Energy Theory
supported by US ATLAS Operations

supported by Nuclear Physics

graduate student (supervised by BNL personnel)

lead analyzer or editor

EGamma Performance Snyder, Tarrade

 $\mathcal{O}(1) \text{ nb}^{-1}$

 $O(10) \text{ nb}^{-1}$

 $O(100) \text{ nb}^{-1}$

JetEtmiss

Begel, Ma, Majewski, Paige[†], Pleier Observation of Jets

Begel, Majewski, Paige[†] Azimuthal Decorrelations in Dijets

Begel, Majewski, Paige[†]

Combined Muon

Adams[‡], Assamagan, Nikolopoulis, Yamamoto

Observation of W/Z

Assamagan, Nikolopoulis, Tarrade, Yamamoto Inclusive μ

Adams[‡], Redlinger

EGamma Performance

Snyder, Tarrade

supported by High Energy Theory supported by US ATLAS Operations

supported by Nuclear Physics

graduate student (supervised by BNL personnel)

lead analyzer or editor

 $\mathcal{O}(1) \; \mathrm{nb}^{-1}$

 $O(10) \text{ nb}^{-1}$

 $O(100) \text{ nb}^{-1}$

 $O(1) \text{ pb}^{-1}$

 $O(10) \text{ pb}^{-1}$

JetEtmiss

Begel, Ma, Majewski, Paige[†], Pleier Observation of Jets

Begel, Majewski, Paige[†] Azimuthal Decorrelations in Dijets

Begel, Majewski, Paige[†]

 $W(\rightarrow \mu)$ +jet cross section Redlinger

Combined Muon

Adams[‡], Assamagan, Nikolopoulis, <u>Yamamoto</u>

Observation of W/Z

Assamagan, Nikolopoulis, Tarrade, Yamamoto Inclusive μ

Adams[‡], Redlinger

supported by High Energy Theory supported by US ATLAS Operations supported by Nuclear Physics

graduate student (supervised by BNL personnel)

lead analyzer or editor

W' Search

Adams[‡]

Observation of $t\bar{t} \rightarrow \ell\ell$

Mete, Pleier, Protopopescu, Rajagopalan, Searcy, Snyder

Snyder, Tarrade

EGamma Performance

 $\mathcal{O}(1)~\text{nb}^{-1}$

 $O(10) \text{ nb}^{-1}$

 $O(100) \text{ nb}^{-1}$

 $O(1) \text{ pb}^{-1}$

 $O(10) \text{ pb}^{-1}$

 $O(100) \text{ pb}^{-1}$

JetEtmiss

Begel, Ma, Majewski, Paige[†], Pleier Observation of Jets

Begel, Majewski, Paige[†] Azimuthal Decorrelations in Dijets

Begel, Majewski, Paige[†] SUSY in $j + \not\!\!E_T$

Gibbard, Paige[†], Redlinger

SUSY in $\ell + j + \not\!\!E_T$

Paige[†], Redlinger, Snyder

Combined Muon

Adams[‡], Assamagan, Nikolopoulis, Yamamoto

Inclusive μ

Adams[‡], Redlinger W' Search

Adams[‡]

 $W(\rightarrow \mu)$ +jet

cross section

Redlinger

 $Z/\gamma^* \rightarrow \mu\mu p_T$

Adams[‡], Begel, Paige[†], Yamamoto

Observation of W/Z

Assamagan, Nikolopoulis, Tarrade, Yamamoto Observation of $t\bar{t} \to \ell\ell$

Mete, Pleier, Protopopescu, Rajagopalan, Searcy, Snyder $WW \to \ell\ell$

Gadfort, Ma, Pleier

 $H \rightarrow ZZ^{\star} \rightarrow \ell\ell$

Assamagan, Nikolopoulis, Tarrade

EGamma Performance

Snyder, Tarrade

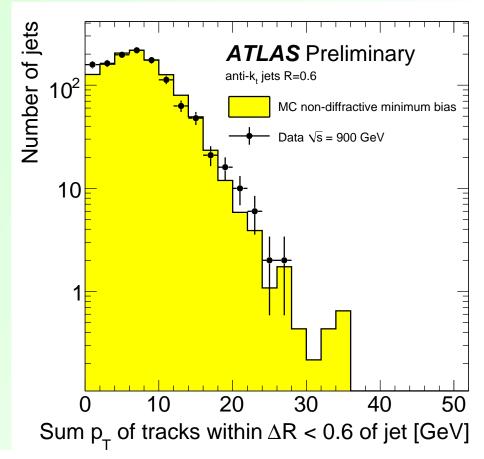
supported by High Energy Theorysupported by US ATLAS Operations

supported by Nuclear Physics

graduate student (supervised by BNL personnel)

lead analyzer or editor

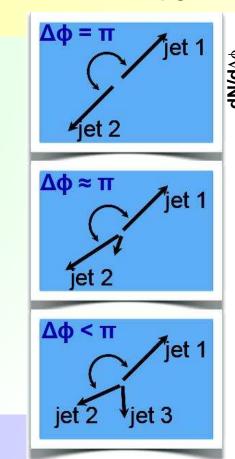
JES with Tracks in Jets

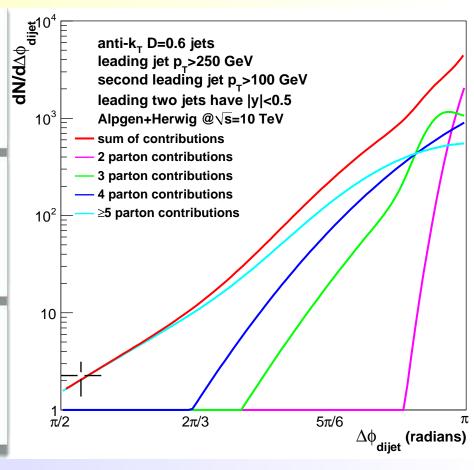


It is critical to quickly establish the jet energy scale (JES) and determine its uncertainty for early jet physics measurements

Begel, Ma, Paige[†]

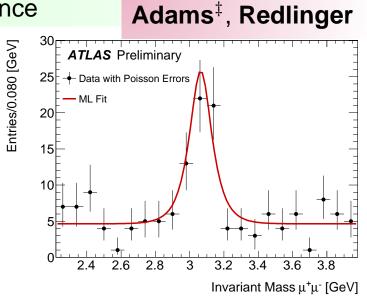
- Initial JES $[O(1) \text{ nb}^{-1}]$ based on simulation with uncertainties extracted from data vs. simulation comparisons
- **Data-based JES requires significantly more integrated luminosity** [$\mathcal{O}(10)$ pb⁻¹]
- Use charged tracks to establish JES with respect to simulation:
 - fraction of jet energy in charged tracks well known:
 - hadronization takes place after DGLAP evolution
 - p_T cut to remove underlying event
 - this method can extend JES to very high-p_T jets
 - on't need high statistics; $\lesssim 5\%$ JES up to 300 GeV with $\mathcal{O}(100)$ nb⁻¹
 - developed by BNL; collaborating with LBNL
 - will be included in initial estimate of JES as confirmation of overall uncertainty


connection with Qiu from BNL Nuclear Theory Group

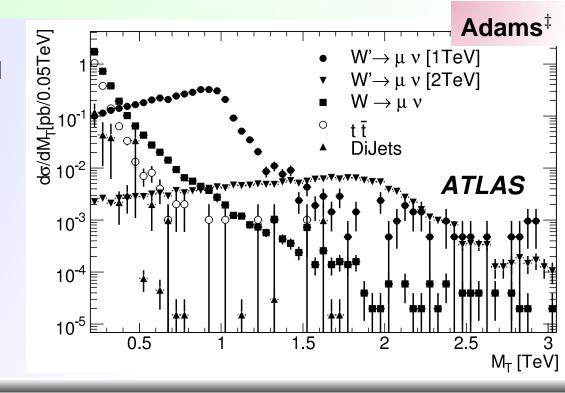


$\Delta \phi$ in Dijet Events

- Azimuthal angle between two leading central jets sensitive to higher-order QCD radiation without explicitly measuring additional jets
 - test pQCD up to $\mathcal{O}(\alpha_s^4)$
 - validate MC event generators such as Alpgen & Sherpa ⇒ important for searches
 - input into Pythia tune
 - shape measurement (no uncertainty from luminosity or absolute efficiencies)
 - limited sensitivity to JES
- Initiated and led by BNL
- Collaborating with Louisiana Tech, SMU, Stony Brook, Toronto, UC London
 - working with 6 students
 - two Ph.D. theses (Stony Brook, Toronto)


- Future Activities
 - re-analyze with precision JES and $[\mathcal{O}(100) \, \text{pb}^{-1}]$
 - extend observable into SUSY search $[\mathcal{O}(0.1-1) \, \text{fb}^{-1}]$

Muon Production



The inclusive muon spectrum is key measure of performance and physics

- single, double, and multiple muon spectra binned in several kinematic observables
- interpret in terms of Standard Model processes
 - c, b, W, Z/γ^*
 - model-independent search for new physical phenomena (high p_T and m_T)
- study correlations with \(\mathcal{E}_T \)
- in collaboration with LBNL & Rome

- W' Search
 - OBNL concentrating on μ + $\not\!\!E_T$ channel
 - contributing to measurements of muon trigger and reconstruction efficiency
 - studying mis-reconstructed muons that make a fake W'
 - Adams[‡] is editor for this paper
 - in collaboration with Athens, CERN, Saclay, TRIUMF, Wisconsin

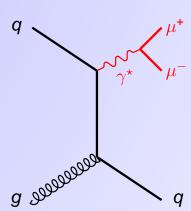
Muon Production

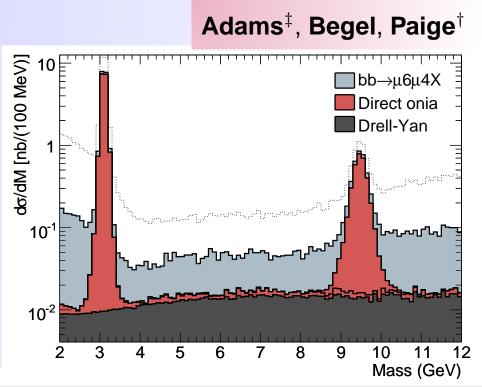
W+jets in the muon decay channel

- Redlinger
- ullet heavy flavor backgrounds \Rightarrow interesting for μ +jet analyses including SUSY
- $Z/\gamma^* \to \mu^+\mu^-$ Production

Adams[‡], Begel, Paige[†], Yamamoto

BNL HEP Theory Group

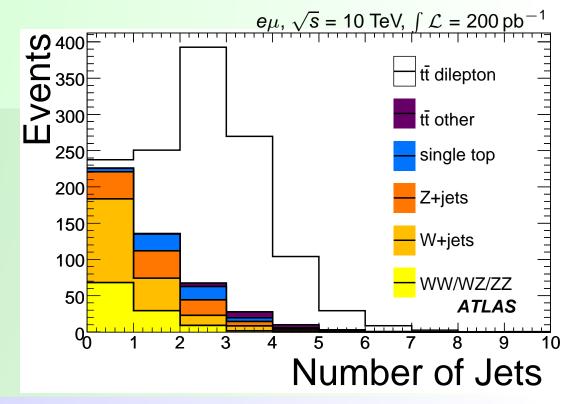

connection with Kilgore from


 $> p_T$ spectrum sensitive to initial-state radiation

test pQCD

- input for Pythia tunes
- \bigcirc measure d σ/dp_T in mass bins
- collaborating with Iowa State; Yamamoto's Ph.D. thesis effort
- High p_T low-mass Drell-Yan equivalent to direct photons via $\gamma^* \to \mu^+ \mu^-$
 - $^{\circ}$ γ^* +jet provides clean calibration signal for low p_T jets [$\mathcal{O}(200)$ pb $^{-1}$]
 - \bigcirc J/ ψ +jet useful for low p_T jet JES

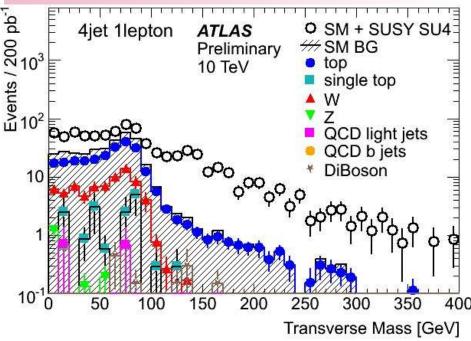
connection with **Kilgore** from BNL HEP Theory Group

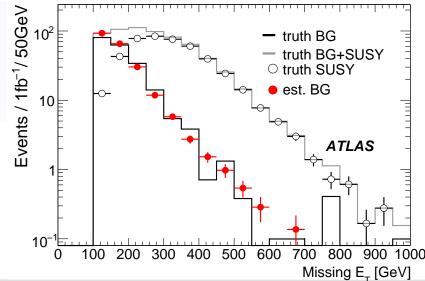

Dilepton tt Cross Section

- The LHC is a top factory!
 - likely to see signatures of new physics
 - significant background to new physics (e.g., SUSY)
 - BNL experienced in top physics from our DØ efforts

Assamagan, <u>Koch</u>, <u>Mete</u>, Patwa, Pleier, Protopopescu, Rajagopalan, <u>Searcy</u>, Snyder

- BNL concentrating right now on dilepton decay channel
 - data quality, luminosity, trigger efficiency, fake rates, and impact of pile-up events
 - in collaboration with Bonn, Glasgow, Iowa State, UC Irvine, New York U., Oregon, Toronto, Stockholm, Yale
 - Mete's Ph.D. thesis effort
- Leverage experience with electrons, muons, and hadronic τ's
 ⇒ increase sensitivity to new physics such as charged Higgs boson
 - lepton + isolated track
 - collaborating with Illinois & Oregon
 - Searcy's Ph.D. thesis effort
 - \bullet lepton + hadronic τ
 - ullet working on au selection criteria
 - with Simon Fraser & LaTech

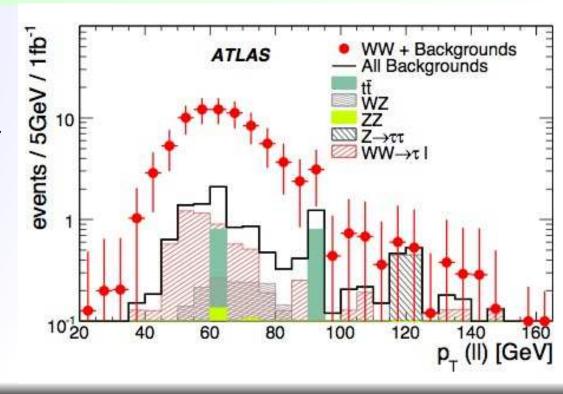

- Longer-term interests $[\mathcal{O}(1) \text{ fb}^{-1}]$:
 - \circ search for $t\bar{t}$ resonances
 - \circ test for lepton universality in $t\bar{t}$ decays; with Johannesburg Koch's Ph.D. thesis effort


Search for SUSY

- The search for SUSY has been a focus of BNL since earliest days of ATLAS
- Concentrate on ℓ+jets+ ₽_T channel
 - good reach prospects
 - better controlled background systematics discovery sensitivity beyond Tevatron from 50 pb⁻¹ onwards
- Study data-driven background methods:
 - $t\bar{t}$ in dilepton and ℓ +jets decay channels
 - γ +jets to estimate W+jets background
 - estimate E_T shape from heavy-flavor muon p_T spectrum
 - in collaboration with Indiana
- Extend QCD dijet azimuthal decorrelation measurement to increase SUSY sensitivity in jets+₱७ channel
- Exploring collaboration with BNL theory group on V+jets production
 - understanding sources of theoretical uncertainties

SUSY Group Co-Convener: Redlinger Begel, Majewski, Gibbard, Paige[†]

Dilepton WW

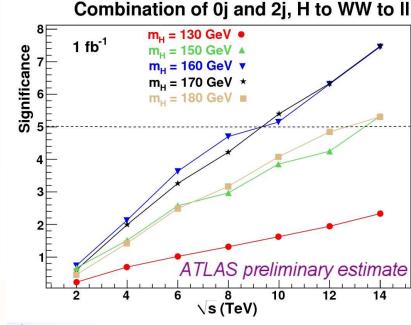


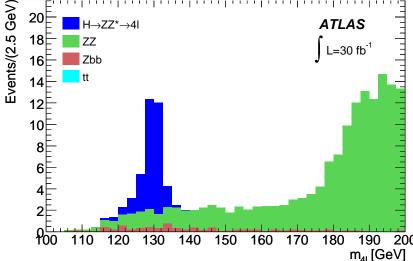
WW cross section is a key Standard Model measurement

Gadfort, Ma, Pleier

- important background for Higgs search
- promising discovery potential through resonances and gauge couplings
- BNL concentrating on dilepton channel:
 - \bigcirc lepton fake rates (synergy with $t\bar{t}$ measurements)
 - \bigcirc exploring b jet veto to suppress $t\bar{t}$ backgrounds (utilizes expertise developed on DØ)
 - \bigcirc also looking into $\not\!\!E_T$ significance
 - working in collaboration with Columbia, Duke, Michigan
 - Ma edited the \sqrt{s} = 14 TeV public note
- \circ $\mathcal{O}(100) \text{ pb}^{-1}$: first cross section
- want $\mathcal{O}(1)$ fb⁻¹ for searches
- plan to introduce matrix element calculations developed on DØ for similar analysis
- long-term interest in jet reconstruction algorithms to identify highly boosted jets coming from W or Z decays

connection with **DavoudiasI** and **Soni** from BNL HEP Theory Group




Search for the Higgs Boson

- The search for the Higgs Boson is a focus of our long-term plans for physics at ATLAS
- Near Term [up to $\mathcal{O}(1)$ fb⁻¹]
 - understand backgrounds to Higgs production
 - sensitivity studies for $H o WW o \ell\ell$ + $ot\!\!\!/ E_T$
 - data-driven $Z \to \ell\ell$ +fake leptons background estimation for $H \to ZZ \to \ell\ell\ell$
 - Leptogenic SUSY
 - search in multi-lepton/multi-jet final states
 - viability of $H \rightarrow b\bar{b}$
 - in collaboration with Tufts & York
 - $H^{\pm} \rightarrow \chi^{\pm} \chi^{0} \rightarrow \ell \ell \ell + \not\!\!E_T + jets$
 - in collaboration with Arizona and Uppsala
 - Medium/Long Term $[\mathcal{O}(1-2) \, \text{fb}^{-1}]$
 - - $lue{}$ includes search for $H \rightarrow Z'Z'$
 - in collaboration with Albany, ICTP, Indiana, Johannesburg, Yale
 - Lee's Ph.D. thesis effort
 - O $H \rightarrow \tau \tau$
 - $Z \rightarrow \tau \tau$ is a significant background
 - studying data-driven background techniques
 - uses our DØ expertise in τ performance

Higgs Group Co-Convener: Assamagan Assamagan, Lee, Nikolopoulis, Patwa, Protopopescu, Tarrade

connections with

from BNL HEP

Theory Group

Dawson & Kilgore

Summary

- BNL has successfully leveraged its long-term contributions to the detector, operations, software, and performance into a strong physics effort
 - recognized by ATLAS with co-convenership of 3 out of 8 physics groups: Higgs: Assamagan (2008–10) SUSY: Redlinger (2009–11) Heavy Ions: Steinberg (2008–10)
 - chosen by ATLAS to edit and review papers
 - leading two high priority physics papers
 - Azimuthal Decorrelation in Dijet Events
 - Search for W' Production
- ATLAS has demonstrated excellent detector performance with collision data at $\sqrt{s} = 0.9$ and 7 TeV and is ready to explore the new energy frontier
- BNL well positioned to take advantage of FY10 11 data
 - experts in jet, electron, muon, and tau performance
 - access to BNL analysis & software expertise and computing resources has been invaluable for analyzing the early data
- We have formed strong collaborations for physics analysis
 - with 19 US institutions (44% of US ATLAS) and 17 foreign institutions
 - BNL analysis Jamborees provide a useful venue for developing collaborations
 - strong connections with BNL theorists
- The energy frontier is the most fertile ground for discovery physics in the coming decade
 - Exotics in dilepton final states
 - SUSY in ℓ+jets+E_T and jets+E_T
 - O Higgs in $\ell\ell\ell+\not\!\!E_T$ +jets, $\ell\ell\ell\ell$, and $\tau\tau$ final states

Additional Information

Collaborating Institutions

Institutions with which we actively collaborate on physics analyses

State University of New York, Albany	/	(Higgs)
University of Arizona		(Higgs)
University of Chicago		(Jets)
Columbia University	(1	$VW \stackrel{`}{ ightarrow} \ell\ell)$
Duke University		$VW o \ell\ell$
U. of Illinois, Urbana-Champagne	_,	$ ightarrow$ ℓ +track)
Indiana University	•	SY, Higgs)
	•	$u,t\bar{t}\to\ell\ell)$
University of California, Irvine		$(t\bar{t} o \ell\ell)$
· · · · · · · · · · · · · · · · · · ·	dijet $\Delta \phi$	$(t\bar{t} \to \tau \ell)$
LBNL	(Je	ts, Muons)
University of Michigan	(1	$VW \rightarrow \ell\ell$
New York University		$(t\bar{t} o \ell\ell)$
University of Oregon	$(t\overline{t}$ -	$\rightarrow \ell$ +track)
Southern Methodist University		(dijet $\Delta \phi$)
State University of New York, Stony	Brook	(dijet $\Delta \phi$)
Tufts		(Higgs)
University of Wisconsin		(W')
Yale	$(tar{t} ightarrow$	$\ell\ell$, Higgs)

Athens	(W')
Bonn	$(t\bar{t} o \ell\ell)$
CERN	(W')
DESY	(min bias)
Freiburg	(min bias)
Glasgow	(min bias, $t ar t o \ell \ell$)
Johannesburg	$(t\bar{t}, Higgs)$
ICTP	(W')
Rome	(Muons)
Saclay	(W')
Simon Fraser	$(tar t o au\ell)$
Stockholm	$(t\bar{t} o \ell\ell)$
Toronto	(dijet $\Delta \phi, t\bar{t} \to \ell\ell$)
TRIUMF	(W')
University College Lor	ndon (min bias, dijet $\Delta \phi$)
Uppsala	(Higgs)
York	(Higgs)